AI Online



Taxiing to and from the airport terminal gate and runway is a major source of CO2 emissions. Aircraft are currently required to use their main propulsion jet engines in a highly inefficient manner for slow speed ground movements; the consequence is greater local air and noise pollution, as well as wasted fuel and hence increased carbon emissions. Ricardo has successfully engineered and delivered a demonstrator robotic, pilot-controlled towing vehicle known as ‘TaxiBot’ for Israel Aerospace Industries (IAI).. The TaxiBot concept is capable of operating with both wide and narrow bodied commercial airliners; it requires no modification to the aircraft, taxiways or runways, and only minor changes to airport infrastructure.

Ricardo has been working for the past 15 months with IAI to develop the Taxibot concept. After an initial feasibility study, Ricardo developed a detailed programme for IAI to take the concept to the level of a working demonstrator vehicle with full capability. Ricardo’s involvement in this work included requirements capture, conceptual design and detailed specification design, manufacture and demonstration of the first TaxiBot demonstrator vehicle.

Following the successful build and initial testing of the first vehicle, IAI has now signed a Memorandum of Understanding with Airbus Industries and a Memorandum of Agreement with international ground support equipment provider TLD, covering the next stages of development of the Taxibot concept. Ricardo was ideally placed to assist with a programme of this nature given the company’s extensive vehicle engineering capability and its multi-disciplinary teams of engineers skilled in areas including computer aided design, modelling, electronics, control systems and all aspects of powertrain engineering.

Commenting on the highly successful programme, Ricardo CEO Dave Shemmans said:”The success of the TaxiBot project is an excellent demonstration of Ricardo’s strategy of related market sector diversification, taking leading edge automotive technologies and development processes and applying them to the needs of related neighbouring industries. We are extremely pleased to have been able to play such a central role in the development of this innovative concept which could dramatically reduce the CO2 emissions of commercial aviation while improving air quality and reducing noise pollution in the vicinity of the world’s major airports.”

After further testing and development, Taxibot has the potential to play a highly significant role in the reduction of fuel costs and emissions. According to IAI and Airbus, Taxiing at airports using the aircrafts’ main engines results in a huge consumption of fuel (forecasted to cost around $7bn by 2012), a large emission of CO2 (approximately 18m tonnes per year), and a significant source of foreign object debris damage (costing around $350m per year).

Previous posts

Next posts

Sun. July 21st, 2024

Share this post